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of how close an individual is to the ultimate solution 
relative to other candidates, and depends on what 
problem the population is meant to solve (Whitley, 
1994). Mutations in the genome may also occur, con-
trolled by a fixed mutation rate. This allows successive 
generations to score progressively higher in the fitness 
module, and thus evolve the population towards max-
imum fitness. The fundamental premise of genetic al-
gorithms is that biological evolution provides a highly 
effective mode of optimization. This paper aims to ex-
tend this analysis beyond random mating, introducing 
explicit systems of reproduction in order to quantita-
tively investigate their efficiency outside of their in-
tended biological context.
 In this work, a genetic algorithm was written 
with the aim of optimizing molecular geometry by 
minimizing the energy of interaction between each of 
the molecule’s constituents. CO2 was used as an exem-
plar, as it can be modeled with a relatively low num-
ber of parameters, which translates into a genome of 
a manageable size. This project could have been con-
ducted on any optimization problem, but this one was 
chosen because its precise solution is known. Similar 
molecular geometry optimization problems have been 
solved with genetic algorithms, particularly those 
involving organic molecules. One notable example 
comes from a 1995 paper by Deaven & Ho, wherein 
the structure of fullerenes is predicted from an initial 
set of random coordinates, up to the buckyball sphere 
structure of C60.
 Our experiment investigates the evolutionary 
role of various reproductive strategies observed in the 
natural world, as well as how they affect the fitness of 
the populations upon which they act. We aim to pro-
vide a quantitative foundation from which to approach 
these biological questions through the disciplines of

Abstract

 The main objective of this study was to compare 
the efficiency of various evolutionary systems in max-
imizing the fitness of the population upon which they 
act. This was accomplished through the development of 
a genetic algorithm to optimize the chemical structure 
of carbon dioxide (CO2), which has a precisely known 
solution. This allowed for the comparison of efficacy of 
different versions of the algorithm, each based on a dif-
ferent evolutionary strategy. Each breeding system rep-
resents a distinct approach to reproduction, generating 
unique evolutionary curves; however, the population 
fitnesses converge toward the optimized solution at ap-
proximately the same time.  It is concluded that for the 
given problem all versions are practical, but for more 
complex problems the path taken to optimization might 
make one method preferable.

Introduction

 Genetic algorithms (GAs) provide a means of 
solving complex optimization problems. The process is 
analogous to natural selection acting on a population 
to induce evolution, including concepts such as fitness, 
mutation, and crossover (Mitchell, 1998). GAs are used 
across industries to solve optimization problems in ev-
erything from shipping routes and gene expression anal-
ysis to investment strategies and chemical reaction path-
ways (Ross & Corne, 1994). When the algorithm is first 
initiated, a population of candidate solutions is random-
ly generated, each with their own genome, which con-
tains all parameters necessary to describe the phenotype. 
These individuals are then reproduced in an iterative 
process, producing generations of solutions, with each 
individual assigned a fitness score. The score is indicative 

Exploring Systems of Reprodution through Modifi-
cation of a Genetic Algorithm aimed at Optimizing 
M0lecular Geometry

University of British Columbia, Vancouver, British Columbia, Canada

Madeline W. Elder & Anna A. Zhitnitsky

10



Canadian Journal of Undergraduate Research April, 2018

chemistry, mathematics, physics, and computer pro-
gramming.

Methods
Program Development

Figure 1 illustrates the structure of the genetic algo-
rithm. Because many generations are often needed to 
find an optimal solution, maximizing efficiency in ge-
netic algorithms is key. We found that the most efficient 
way to encode information in our program was to rep-
resent the population of molecules in a 2D array, each 
row of which contains sufficient parameters to describe 
one candidate:

Figure 1. This flowchart shows the general structure of the GA 
used. The full code can be found 
in the appendix of this paper. 

Parameters 1 and 2 (P1 and P2) represent the C-O 
bond lengths of the molecule, and were randomly and 
uniformly drawn from the range 1.0-2.0 Å, a reason-
able interval given that the observed bond length is 
1.16 Å (Phan et al., 2003). The third parameter rep-
resents the bond angle between the two C-O bonds, 
in the range of 0° to 180°. Finally, the fitness of each 
candidate was calculated using these same three pa-
rameters. The fitness function is based on the electro-
static potential between each charge pair permutation 
and follows the equation:

Where k=9×109 N (Coulomb’s constant), Q1, Q2, 
and Qc are the partial charges (d+ and d-) on the 
two oxygen atoms and the carbon atom. The aim is 
to minimize the net energy of interaction and thus 
maximize the fitness score. The negative sign ensures 
the function is strictly non-negative. The combination 
of the fitness and sort functions inherently eliminates 
physically impossible phenotypes produced by not 
assigning them a fitness score. An example of such 
a structure is when Parameter 3, the O-C-O bond 
angle, is zero, such that the oxygen atoms lie on top of 
one another. This renders the third term of the fitness 
function undefined, represented in Python as NaN 
(not a number).
 We wrote a mutation function into each mat-
ing function to maintain genetic diversity. If a muta-
tion is unfavourable, natural selection will prevent its 
widespread uptake; otherwise, mutations accelerate 
the process of evolution. In the absence of mutations, 
a population risks stagnation - where the population 
converges on the same non-optimal solution (John-
ston, 2003). We used a method analogous to a rou-
lette wheel to incorporate static mutations into our 
algorithm. Static mutations result in the replacement 
of a gene with a random new allele (Johnston, 2003). 
In the mutation roulette, a random number between 
0 and 1 is generated for each gene of each candidate. 
If this number is below the predefined mutation rate, 
the gene is randomly mutated. For instance, if the 
mutation rate were set to 0.01, probabilistically, 1% of 
all genes of all candidates would be mutated per
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generation. 
 Upon the creation of a new generation, the can-
didates are sorted in decreasing order of fitness using 
an external NumPy sort function. This allows for the 
straightforward removal of the bottom-most portion of 
the population, to be replaced with offspring of the fitter 
candidates. 

Methods 
Simulation of Biological Systems

In this section, we will compare each biological system 
modeled: Alpha, League Monogamy, and Polygamy. In 
the Alpha model, the top candidate of each generation 
(index 0) mates with each of the other surviving individ-
uals. This is analogous to breeding systems in wolves and 
lions (Mech, 1999). The rationale behind this system of 
evolution is that the alpha individual has the best genes. 
Thus, the quickest way to improve the fitness of the pop-
ulation as a whole is to spread these genes across the en-
tire subsequent generation. 
 In the League Monogamy model, the bottom 
50% of candidates are removed per generation. Then, po-
tential candidates pair with candidates of similar fitness, 
producing two offspring. This simulates standard human 
mating, where status often determines reproductive pat-
terns, and the number of children produced is tending 
towards replacement (Schmitt, 2005).
 To model r-selected polygamy, candidates pair 
several times per generation, producing one offspring 
per pairing. Additionally, 75% of each generation is re-
moved to allow for more offspring. As in the real world, 
the evolutionary benefit of polygamy is that it increases 
the diversity in the next generation, as each individual 
can potentially have a unique set of parents (Nutting 
1891). Such methods of evolution are often found in 
r-selected species, such as plants and insects, which must 
be capable of adapting to drastic environmental changes 
by reproducing at high rates.

Results 

 Each evolutionary model was run for 100 genera-
tions, after which the highest fitness score was recorded. 
This was considered to be the optimized solution.
 The fitness score to which each final solution was 
compared was calculated using the same function with 
experimentally determined data: P1=P2=1.16Å, P3=180° 
(Phan et al., 2003). Table 1 summarizes the solution 

given by each model, as well as relative fitness scores.

Figure 2. Graph of the highest scoring individual of each 
generation following the three simulated evolutionary 
models. The algorithm was run for 100 generations with a 
fixed mutation rate of 0.1. Standard deviation for each data 
point is not shown for the sake of visibility; however, the 
standard deviation obtained for the final fitness scores of 
the top candidate of each model can be found in Table 1. 

Table 1. Optimized data describing the geometry 
of a CO2 molecule after 100 generations. The relative 
fitness is the ratio between the calculated fitness score 
of the ideal known solution and the fitness of the top 
optimized solution for each breeding system mod-
elled. Therefore, the most accurate model is the one 
with a relative fitness closest to 1. All values are aver-
ages taken from 10 trials. The highest fitness score of 
each generation is plotted in Figure 2.

Figures 2 and 3 summarize the successive evolution 
of the highest fitness score of each reproductive mod-
el.

Discussion

Figure 2 illustrates the evolutionary pathway followed 
by each of the three reproductive methods. After 100 
generations the curves converge on the same opti-
mized solution, indicating a similar overall efficiency.
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However, as highlighted in Figure 3, differences between 
fitness in earlier generations shows that each breeding 
system has distinct characteristics. For example, r-se-
lected polygamy appears to be initially the most efficient, 
due to the rapid initial improvement in population fit-
ness. This correlates to the biological rationale for polyg-
amy, that it allows the population to adapt very quickly 
to drastic changes in the environment, such as starting 
from an entirely random molecular geometry (Gould & 
Lewontin, 1979). However, because the ‘best’ genes do 
not dominate the gene pool, the polygamy model experi-
ences the longest plateau before reaching the optimized 
solution. This suggests that it may not be necessary for an 
r-selected species to reach an idealized genome. By defi-
nition, r-selected species thrive in environments of con-
stant changing pressures, where the requirements for the 
‘perfect’ genome can change regularly. This highlights an 
inherent limitation of this system, one that makes it un-
favourable for species in more stable environments, such 
as humans (Gould & Lewontin, 1979). It is also worth 
noting that the results of the polygamy model showed 
the greatest standard deviation; 0.18%, suggesting a gen-
eral instability in this evolutionary system. 

Figure 3. Graph of the highest scoring individual of each gen-
eration following the three evolutionary models simulated, for 
the first 14 generations. As in Figure 2,  the standard deviation 
for each data point is not shown for the sake of visibility. 

 Similarly, the Alpha Male model displays a sharp 
initial increase in fitness, as the genes of the top candi-
date flood the gene pool. However, this results in very 
low genetic diversity in subsequent generations, risking 
stagnation. This can be prevented with a sufficiently high 
mutation rate; however, of the three models, the Alpha 
model is still most susceptible to achieving false or local 
maxima, as illustrated in Figure 4. Nevertheles, because

of the low genetic diversity, the uncertainty associated 
with the results of this model is lowest: ±0.12%. In 
sum, the Alpha model will give the most precise solu-
tion, but is best used when an approximate solution 
is already known.  It is important to note that such 
a method for reproduction is generally only seen in 
k-selected species, such as lions and wolves, whose 
environmental pressures remain comparatively stable, 
meaning they can afford to have relatively low genetic 
diversity (Huston, 1979).

Figure 4. This generalized fitness landscape demonstrates 
the concept of a local maximum in comparison to a global 
one. The z-axis represents fitness, while the xy plane rep-
resents two parameters. Getting “stuck” at a local maxi-
mum is one of the biggest dangers for genetic algorithms, 
as it can lead to very imprecise and inaccurate results. One 
of the best defenses against this is high rates of mutation. 
Adapted from the work by Clegg (2008) without permis-
sion (13). 

 League monogamy is interesting in that it 
most closely approximates human mating systems. 
Because it has the most moderate rate of evolution, 
we posit that it is the most widely applicable mod-
el. It is worth noting that this model contains the 
technically simplest code, which can be useful when 
approaching a problem that is otherwise complex. 
However, because of the gradual rate of evolution, it 
may be inefficient when considering a problem for 
which the candidate solutions are described by a large 
number of parameters.

Limitations

We did not design our genetic algorithm to compre-
hensively simulate biological systems, meaning there 
are limits to the generalizability of its results. For in-
stance, there was no regulation of successful offspring 
breeding with their parents. For our purposes, this 
may be beneficial to the evolution of the population, 
as both the offspring and parent may be leading
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candidates in the race to optimization. However, in bio-
logical systems, inbreeding can introduce unfavourable 
mutations, causing offspring to have lowered fitness or 
even to die. 
Furthermore, in the algorithm proposed here, there was 
no maximum lifespan, meaning that a high-scoring can-
didate could maintain its position in the population for 
many generations, something that is not possible in the 
biological world. 
One of the main limitations of our fitness function was in 
its physical accuracy. For example, the function did not 
account for the screening effects of carbon on oxygen, 
which would have made the 180° structure vastly more 
favourable. In order to eliminate this effect, a specific if 
loop was written for candidates with P3=180°, such that 
their fitness was evaluated according to the following 
equation: 

This function assumes no oxygen-oxygen interaction 
due to the screening effects of carbon. Even so, partial 
screening is not accounted for.
 Finally, we note that the final fitness score does 
not change dramatically in response to large changes 
in bond angle, which is untrue in experimental settings 
(Wu & Chern, 1997). This is likely because the derivative 
of cos(x) is -sin(x), which approaches 0 as x nears the ob-
served bond angle of 180°. This means that with an angle 
close to 180°, the rate of change of the cos(x) term is very 
small, even for large changes in x.

Conclusion

This experiment is important not only in the pursuit of 
the most efficient genetic algorithm, but also to further 
our understanding of why different species and popula-
tions have developed such a diverse range of reproduc-
tive strategies: how does each mode affect evolutionary 
speed? In what ways does this serve the population?
 As might be expected, each system of evolution 
confers advantages and disadvantages to the population 
upon which it acts. Models reliant on extreme genetic 
diversity and rapid reproduction, such as the polygamy 
model, are best suited for determining an approximate 
solution, as it retains the greatest uncertainty, but takes

the least amount of time to run, and explores the 
largest number of candidate solutions. Conversely, 
problems that require high precision, and for which 
the solution is already approximately known, would 
best be solved by a lower diversity model such as 
Alpha. We posit that League Monogamy is the most 
generally applicable model, as it is both relatively 
efficient and accurate. Furthermore, because it is the 
simplest to program, the model would be particularly 
efficient to use on highly complex problems involving 
many parameters and a sophisticated fitness function.  
For this particular optimization problem, any evolu-
tionary system could be used to solve the problem in 
under 100 generations.
 Future work could explore the trends dis-
cussed above in a more complex optimization prob-
lem. This would allow us to see how significant the 
differences in global maximum uncertainty and 
fitness function dynamics can be, and whether they 
might give rise to a preference for one system over the 
others.
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